College of Veterinary Medicine

Research in IPN

Anita Vasavada, Ph.D.

  Anita Vasavada

Anita Vasavada, Ph.D.
Associate Professor
Office: McCoy South 203W
Phone: (509) 335-7533

Research Interests

Biomechanics and neural control of the musculoskeletal system, utilizing anatomically-based models complemented with experimental data.  Most of my research is focused on the human head and neck system.  

Specific Research Projects

Postural stability of the human head and neck

Neck muscles are important for both static postural stability (i.e., holding up the head) and restoring head posture under dynamic conditions, such as those that might occur during a blow to the head or an automobile accident (e.g., whiplash injury).  When muscles are unable to stabilize the head, it can lead to injury and chronic neck pain.  We are examining how the activation of neck muscles complements passive tissue stiffness to achieve postural stability using experimental studies in human subjects integrated with biomechanical model analysis. 

Mechanisms of whiplash injury

The anatomical site and mechanism of injury during whiplash (a rapid acceleration of the head and neck) are still unclear.  We have utilized a biomechanical model of the neck musculoskeletal system with experimental data of human subjects undergoing 5 mph whiplash-like perturbations to calculate the strains, and thus potential for injury, in neck muscles.

Gender differences in the neck musculoskeletal system

The goal of this work is to evaluate factors responsible for the increased incidence of whiplash injury and neck pain in females vs. males.  We have found that female neck geometry is not a simple scaled version of male neck geometry, which implies that gender-specific biomechanical models are necessary to evaluate gender differences in neck musculoskeletal disorders.  We are currently developing a biomechanical model of the female neck musculoskeletal system.

Improving the geometric representations of neck muscles in biomechanical models

Our current models of the neck musculature represent neck muscles as straight lines.  We are incorporating curved muscle paths into our models by defining geometrical constraints that approximate the curved neck muscle paths based on magnetic resonance imaging (MRI) data.

Selected Publications

Siegmund, GP, Winkelstein, BA, Ivancic, PC, Svensson, MY, Vasavada, AN. The anatomy and biomechanics of acute and chronic whiplash injury. Traffic Injury Prevention, 10(2):101-112, 2009.

Vasavada, AN, Lasher, RA, Meyer, TE, Lin, DC.  Defining and evaluating MRI-derived wrapping surfaces for spinal muscles.  Journal of Biomechanics, 41:1450-1457.

Vasavada, AN, Danaraj, J, Siegmund, GP.  Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women.  Journal of Biomechanics, 41:114-121, 2008.

Vasavada, AN, Brault, JR, Siegmund, GP.  Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury.  Spine, 32(7):756-765, 2007.  

Anderson, J, Hsu, A, Vasavada, AN.  Morphology, architecture and biomechanics of the human cervical multifidus.  Spine, 30:4:E86-E91, 2005. 

Vasavada, AN, Peterson, BW, Delp, SL.  Three-dimensional spatial tuning of neck muscle activations in humans.  Experimental Brain Research, 147:4:437-448, 2002.  [cited 11 times].

Panjabi, MM, Crisco, JJ, Vasavada, A, Oda, T, Cholewicki, J, Nibu, K, Shin, E.  Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves.  Spine, 26(24):2692-2700, 2001.

Vasavada, AN, Li, S, Delp, SL.  Three-dimensional isometric strength of neck muscles in humans.  Spine, 26(17):1904-1909, 2001.

Vasavada, AN, Li, S, Delp SL.  Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles.  Spine, 23(4):412-422

PubMed Publications (Note: PubMed Search may produce additional "Vasavada, AN" authors.)

Last Edited: Apr 09, 2013 10:28 AM   

IPN, PO Box 647620, 205 Veterinary and Biomedical Research, Washington State University, Pullman, WA 99164-7620, 509-335-6624 Contact UsSafety Links